Deep Generative Models

9. Generative Adversarial Networks




Two-sample test via a discriminator

e Training objective for discriminator
r%ix V(pg, D¢) = r%?bx Exp,0ra log Dy (x)| + Exp, [log (1 — Dy (x))]

~ max > logDy(x) + ) log(1— Dy(x))

XES, X€ES,
« For a fixed generative model pg, the discriminator is performing binary

classification with the cross-entropy objective
» Assign probability 1to true data points x~p4,., (in set S;)
 Assign probability O to fake samples x~p, (in set S,)
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Two-sample test via a discriminator

« Training objective for discriminator
r%ix V(po, Dg) = r%?bx Ex~paatal108 Dp ()| + Ex-p, [log (1 ~Dg (x))]

~ max > logDy(x) + ) log(1— Dy(x))

XES, X€ES,
« For a fixed generative model p,, the optimal discriminator is given by
X

Pdata(X) + pg(x)
* If pg = Pyata, Cclassifier cannot do better than chance (Dy(x) = 1/2)
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Generative Adversarial Networks

« A two-player minimax game between a generator and a discriminator
 Generator
« Directed latent variable model with a deterministic mapping
between z and x given by Gy
« Sample z~p,, where p, is a simple prior, e.g., Gaussian
e Setx = GQ (Z)
« Like a flow model, but mapping G4 need not be invertible
« Distribution over py(x) over x is implicitly defined (no likelihood!)
 Minimizes a two-sample test objective (in support of the null

hypothesis p 414 = Pg)
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Example of GAN objective

e Training objective
minmaxV(G,D) = mGjn max Exp,, 108 D(xX)] + Ex.p, [log(l — D(x))]

: %or che optimal discriminator Dg (-), we have
V(G,Dg)
X X
= Frpaaa _logpdatf ?fcl;ai Izc ()| T Pere [l"gpdam gf)(:pg ()
- X
= Exia 08 El;l;;"(‘xlzc @ |7 |8 bt f;)Z(‘F)PG (x)] ~lost
=D (pdata I pd““‘2+ pG) +D (pG n pd‘““; pG) —log4

= 2J/SD (pdata | pG) - 1084
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The GAN training algorithm

+ Sample minibatch of n training points x(, x ... x™ from p 4.,
» Sample minibatch of n noise vectors z(1, 23, ...z from p,
» Update the discriminator parameters ¢ by stochastic gradient ascent

VgV (Gg,Dy) = %quzn: [108 Dy (%) + log (1 — Dy (GG (Z(i))))]

 Update the generator pz_arameters 6 by stochastic gradient descent

VQV(GQ;Dd)) — —VQ z log (1 — D¢ (Gg (z(l))))

e Repeat for fixed number of epochs
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Recap of GANs

« Choose d(pgqiq,Pg) 10 be a two-sample test statistic
e Learn the statistic by training a classifier (discriminator)
« Under ideal conditions, equivalent to choosing d(p 4:4, Pg) tO be
JSD (pdata | pQ)
« Generator Gy(e.g., neural network) is a mapping that generates x from
the latent variable z and is trained to make it difficult for the classifier
to distinguish
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Recap of GANs

e Pros:
« Loss only requires samples from py (No likelihood needed!)
 Lots of flexibility for the neural network architecture, any G4
defines a valid sampling procedure
e Fast sampling (single forward pass)
e Cons: very difficult to train in practice
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Summary of GANs

e Likelihood-free training
e Training objective for GANs

V(G,D) = Exp, . [logD(x)] + Exp[log(1 — D(x))]
« With the optimal discriminator D, we see GAN minimizes a scaled and
shifted Jensen-Shannon divergence

mGin ZJSD (pdata | pG) o 10g4‘

» Parameterize D by ¢ and G by 6
 Prior distribution p,

m91n mq.;slx Exp,0ra |llog D¢(x)] +E,p, [log (1 — D¢(Ge (Z)))]

e |e,
n

V(Go.Dg) = Y [108Dy(x) + log (1~ Dy (6o (=) )

=1
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Beyond KL and Jenson-Shannon Divergence

« What choices do we have for d(-)?
KL divergence: Autoregressive models, Flow models
e (scaled and shifted) Jensen-Shannon divergence (approximately):
original GAN objective
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f-divergences

« What choices do we have for d(-)?
 Given two densities p and g, the f-divergence is given by

Df(p» q) = Ex~q [f (%)

« Where f is any convex, lower-semicontinuous function with f(1) = 0
« Convex: Line joining any two points lies above the function

 Lower-semicontinuous A
lim inf £ (x) = f(x,) /\
X=X
 for any point x, /. >
« Jensen’s inequality X,

p(x) p(X)]\ B _
Ex-q [f (@)] > f(Ex~q PIC)) ) = f(fp(x)dx) =f(1)=0

« Example: KL divergence with f(u) = ulogu
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f-divergences

Name Ds(P|Q) Generator f(u)

Total variation 2 [ Ip(z) — q( )| dx 2lu—1]

Kullback-Leibler [ p(z)log® Pz) g ulogu

Reverse Kullback-Leibler f q(z)log 4 pégj dx —logu

Pearson x? 1l (q(w)p(f)(w)) dx (u—1)2

Neyman y? [EC=ETN (w2

Squared Hellinger I (\/ p(z) — Vq(z ) dx (Vu—1)>

Jeffrey [ (p(x) — q(x))log (pgg) dx (u—1)logu
Jensen-Shannon 1 [ p(z)log p(mﬁ?m) + q(x) log p(j)qi?(x) dx —(u+1)log L% + ulogu

Jensen-Shannon-weighted
GAN

a-divergence (a ¢ {0,1})

(z
fp z)m log ﬂp(:r)+p(1 m)q(x) +(1

fp(fL‘ log p(m)—i(-q)(:c) + q(x)log p(j)qj_:z)(x) dz —log(4)
= S (p@) [(24)" - 1] - alel@) — p(a))) da

— m)q(x) log wp(z)+q((1m—)7r)q(:r) dz

mulogu — (1 —7r+7ru)log(1 — 7+ Tu)
ulogu — (u+1)log(u+ 1)
%(uo‘—l—a(u—l))

a(a—1

Source: Nowozin et al., 2017
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Training with f-divergences

* Given pyarq and pg, we could minimize D¢ (Paqtq, Do) OF Df(Po, Paata)
as learning objectives. Non-negative and zero if pg = D44

« However, it depends on the density ratio which is unknown

D¢ (Do, Paata) = Ex~pyurq [f (p: 9;’2())]

Df (Paata Po) = Ex“’p@ [f <p;l;;t€£)x)>]

« To use f-divergences as a two-sample test objective for likelihood-
free learning, we need to be able to estimate the objective using only
samples (e.g., training data and samples from the model)
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Towards Variational Divergence Minimization

« Fenchel conjugate: for any function f(+), its convex conjugate is

fr() = sup (ut—f(u))

uedoms
where domy is the domain of the function f

« f*is convex (pointwise supremum of convex functions is convex) and
lower semi-continuous

Convex Function f(x) Fenchel Conjugate " (y)

10t — f(y)
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Towards Variational Divergence Minimization

« Let f** be the Fenchel conjugate of f*
fr@ = sup (tu—f()

tedom ¢«
« f* < f.Proof: By definition, for aIIft,u
f*(t) = ut — f(u) or equivalently f(u) = ut — f*(t)
fa) = sup (ut—fr(0) = £ ()

tedom g«
f
« Strong Duality: f** = f when f(-) is convex and lower semicontinuous
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f-GAN: Variational Divergence Minimization

« We obtain a lower bound to an f-divergence via Fenchel conjugate

(%) o (PO
Df(piq)_ x~(q [f<5(x))]_ x4 [f (%)]

p(x) .
ab (()f “))]

> sup f [T(x)p(x) — f*(T(x))q(x)]dx

TET

= SUP(Exp[T(X)] — Ex—q[f*(T(x)])

TET

= Eyq

e where T: X — R s an arbitrary class of functions
« Note: Lower bound is likelihood-free w.r.t. p and g
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f-GAN: Variational Divergence Minimization

Variational lower bound
Dy (1. 4) 2 SUp(Ex-p[T ()] = Ex~qf*(T(1)])
« Choose an f-divergence

* Letp =pyata and q = pg
» Parameterize T by ¢ and G by 6

« Consider the following f-GAN object

mein mqglx F(0,¢) = m@in mqglx Exp,0ea [Tqb (x)] - Ex~PGQ [f* (Tqb (x))]
« Generator G4 tries to minimize the divergence estimate and

discriminator Ty tries to tighten the lower bound

 Substitute any f-divergence and optimize the f-GAN objective
 Prior distribution p,

min max Ex-p,|Tp (0] = Bz, [ (To (6o ()|
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Example: Univariate Mixture of Gaussians

Pdatq- @ Mixture of Gaussians
Model Qg4 using linear transformation of a standard normal z~N(0,1)
and outputs G4(z) = u + oz, where 6 = (u, o)

KL KL-rev JS Jeffrey Pearson
D;(P||Qg+) 02831 02480 01280 05705 06457 train \ test KL KL-rev IS Jeffrey  Pearson
F(w,0) 0.2801 0.2415 0.1226  0.5151 0.6379 KL 0.2808 0.3423 0.1314  0.5447 0.7345
KL- 351 2414 0122 5794 1.3974
n* 10100 15782 13070 13218  0.5737 s 3227? 8.2760 3.1213 8.;20 0.93291760
f 10335 1.5624 12854 1.2295 06157 Jeffrey 02869 02975  0.1247 05236 0.8849
& 18236 1.6403 17659  1.8087  1.9031

Table 3: Gaussian approximation of a mixture of Gaussians. Left: optimal objectives, and the learned mean

and the standard deviation: § = (fi, &) (learned) and 6* = (1*, o*) (best fit). Right: objective values to the true
distribution for each trained model. For each divergence, the lowest objective function value is achieved by the
model that was trained for this divergence.

Source: Nowozin et al., 2017
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Beyond KL and Jensen-Shannon Divergence

« What choices do we have for d(-,-)?
« KL divergence: Autoregressive Models, Flow models

e (scaled and shifted) Jensen-Shannon divergence (approximately):

via the original GAN objective
« Any other f-divergence (approximately): via the f-GAN objective

m@in mqglx F(6,¢) = m@in mqglx Expi0ea [Tqb (x)] — Ex~p69 [f* (Tqb (x))]
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Wasserstein GAN: beyond f-divergence

e The f-divergence is defined as

Df(pf q) = Ex~q [f (%)

« The support of g must cover the support of p. Otherwise, discontinuity
arises in f-divergences

e Eg,
1, x=0 1, x=86
' Letp(x):{o x %0 2Nd %(x):{o X # 0
0, 6 =0
‘ DKL(P;CIQ)Z{OO 0 = 0

0, 6=0
. D]s(P;CIe) — { 1082; 0 +0
« We need a “smoother” distance D(p, q) that is defined when p and
g have disjoint supports
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Wasserstein (Earth-Mover) distance

e Introduced by Leonid Vaserstein(Russia)
e 1t Wasserstein distance

Dy(p,q) == _inf j |x — yldy(x,y)
Yerw.@) Jx vk

- ye%?E,q>xzy'x - ylyx)
« where I'(p, q) contains all joint distributions of (x, y) where the
marginal of x is p(x) and the marginal of y is q(y)
* y(y|x): a probabilistic earth moving plan that warps p(x) to q(y)
1, x=0 11, x=86
Let p(x) = {O, =1 and go(x) = {O, <+ 0

‘ Dw(P»CIO) - |0|
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Wasserstein GAN (WGAN)

Kantorovich-Rubinstein duality
Dy(p,q) = ||Sup Ex~p [f(x)] - Ex~q [f(x)]

fliL=1

Il 1], < 1 means the Lipschitz constant of f(x) is 1. l.e,,
f)—fI<llx—yll. vxy

* Intuitively, f cannot change too rapidly

» Wasserstein GAN with discriminator D, (x) and generator Gg(z)

mein mqbaX Ex~pdam [qu (X)] - Ez~pz [D(P (69 (Z))]

e Lipschitzness of Dy (x) is enforced through weight clipping or
gradient penalty on V,. D (x)
 To enforce Lipschitz constraint, clip the weights of the critic to lie

within a compact space [—c, c]. The set of functions satisfying this
constraint is a subset of the K-Lipschitz functions for some K(c)

« If we replace ||f||, < 1for ||If|l, <K, then we end up with K - D,,(p, q)
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Wasserstein GAN Gradient Penalty

e Wasserstein GAN-GP
YR B [P 0] = Erp, [0 (Go ()

2
- 2y | (VD @, ~ 1) |

Proposition 1. Let P, and P, be two distributions in X, a compact metric space. Then, there is a
I-Lipschitz function f* which is the optimal solution of max| s, <1 Ey~p,[f(y)] — Ez~p, [f(2)].
Let m be the optimal coupling between P, and P,, defined as the minimizer of: W (P,,P;) =
infrcrie, p,) Eo,y)~r [|1Z — yll] where TI(P,.,Py) is the set of joint distributions (x,y) whose

marginals are P, and P4, respectively. Then, if f* is differentiable*, m(x = y) = 0%, and x; =
tz + (1 — )y with 0 < t < 1, it holds that P4 ) [v F(z) = &] — 1

 lly—=l
Corollary 1. f* has gradient norm 1 almost everywhere under P, and P,,.
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Wasserstein GAN Gradient Penalty

 Wasserstein GAN-GP
mein mqglx Expinta [D¢ (x)] — Ezepy [qu(Ge (Z))]

2
- 2y | (VD @, ~ 1) |
« Sampling distribution p;: uniformly along straight lines between pairs

of points sampled from the data distribution and the generator
distribution
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Wasserstein GAN Gradient Penalty

e Wasserstein GAN-GP

IR Es (D 0] = e, [0 G0 )

2
- 2y | (VD @, ~ 1) |

Weight clipping

8 Gaussians 25 Gaussians  Swiss Roll 1ol T Weight dlipping (c = 0.001) |
— —— Weight clipping (¢ = 0.01)

—
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Discriminator layer

(a) Value surfaces of WGAN critics trained to op- (b) (left) Gradient norms of deep WGAN critics dur-
timality on toy datasets using (top) weight clipping ing training on the Swiss Roll dataset either explode
and (bottom) gradient penalty. Critics trained with or vanish when using weight clipping, but not when
weight clipping fail to capture higher moments of the using a gradient penalty. (right) Weight clipping (top)
data distribution. The ‘generator’ is held fixed at the pushes weights towards two values (the extremes of
real data plus Gaussian noise. the clipping range), unlike gradient penalty (bottom).

Figure 1: Gradient penalty in WGANSs does not exhibit undesired behavior like weight clipping.
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Inferring latent representations in GANs

 The generator of a GAN is typically a directed, latent variable model
with latent variables z and observed variables x

« How can we infer the latent feature representations in a GAN?

e Unlike a normalizing flow model, the mapping G: z - x need not be
invertible

« Unlike a variational autoencoder, there is no inference network q(-)
which can learn a variational posterior over latent variables
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Inferring latent representations in GANs

e Solution 1: For any point x, use the activations of the prefinal layer of
a discriminator as a feature representation
e Intuition: Like supervised deep neural networks, the discriminator

would have learned useful representations for x while distinguishing
real and fake
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Inferring latent representations in GANs

e If we want to directly infer the latent variables z of the generator, we
need a different learning algorithm

e A regular GAN optimizes a two-sample test objective that compares
samples of x from the generator and the data distribution

e Solution 2: To infer latent representations, we will compare samples of
x, z from the joint distributions of observed and latent variables as per
the model and the data distribution

« For any x generated via the model, we have access to z (sampled from
a simple prior p(z))

 For any x from the data distribution, z is however unobserved (latent).
Need an encoder
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Summary of Generative Adversarial Networks

« Key observation: Samples and likelihoods are not correlated in

practice
« Two-sample test objectives allow for learning generative models only

via samples (likelihood-free)
« Wide range of two-sample test objectives covering f-divergences and

Wasserstein distances (and more)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University



Thanks




