
Deep Generative Models

9. Generative Adversarial Networks

• 국가수리과학연구소 산업수학혁신센터 김민중

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Training objective for discriminator
max
!!

𝑉 𝑝" , 𝐷# = max
!!

𝐸𝒙~&"#$# log𝐷# 𝒙 + 𝐸𝒙~&% log 1 − 𝐷# 𝒙

≈ max
!!

2
𝒙∈(&

log𝐷# 𝒙 + 2
𝒙∈('

log 1 − 𝐷# 𝒙

• For a fixed generative model 𝑝", the discriminator is performing binary
classification with the cross-entropy objective
• Assign probability 1 to true data points 𝒙~𝑝)*+* (in set 𝑆,)
• Assign probability 0 to fake samples 𝒙~𝑝" (in set 𝑆-)

Two-sample test via a discriminator

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Training objective for discriminator
max
!!

𝑉 𝑝" , 𝐷# = max
!!

𝐸𝒙~&"#$# log𝐷# 𝒙 + 𝐸𝒙~&% log 1 − 𝐷# 𝒙

≈ max
!!

2
𝒙∈(&

log𝐷# 𝒙 + 2
𝒙∈('

log 1 − 𝐷# 𝒙

• For a fixed generative model 𝑝", the optimal discriminator is given by

𝐷"∗ 𝒙 =
𝑝)*+* 𝒙

𝑝)*+* 𝒙 + 𝑝" 𝒙
• If 𝑝" = 𝑝)*+*, classifier cannot do better than chance (𝐷"∗ 𝒙 = 1/2)

Two-sample test via a discriminator

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• A two-player minimax game between a generator and a discriminator
• Generator

• Directed latent variable model with a deterministic mapping
between 𝒛 and 𝒙 given by 𝐺"
• Sample 𝒛~𝑝/, where 𝑝/ is a simple prior, e.g., Gaussian
• Set 𝒙 = 𝐺" 𝒛

• Like a flow model, but mapping 𝐺" need not be invertible
• Distribution over 𝑝" 𝒙 over 𝒙 is implicitly defined (no likelihood!)
• Minimizes a two-sample test objective (in support of the null

hypothesis 𝑝)*+* = 𝑝")

Generative Adversarial Networks

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Example of GAN objective

• Training objective
min
0
max
!

𝑉 𝐺,𝐷 = min
0
max
!

𝐸𝒙~&"#$# log𝐷 𝒙 + 𝐸𝒙~&(log 1 − 𝐷 𝒙
• For the optimal discriminator 𝐷0∗ ⋅ , we have
𝑉 𝐺,𝐷0∗

= 𝐸𝒙~&"#$# log
𝑝)*+* 𝒙

𝑝)*+* 𝒙 + 𝑝0 𝒙 + 𝐸𝒙~&(log
𝑝0 𝒙

𝑝)*+* 𝒙 + 𝑝0 𝒙

= 𝐸𝒙~&"#$# log
𝑝)*+* 𝒙

𝑝)*+* 𝒙 + 𝑝0 𝒙
2

+ 𝐸𝒙~&(log
𝑝0 𝒙

𝑝)*+* 𝒙 + 𝑝0 𝒙
2

− log 4

= 𝐷 𝑝)*+* ∥
𝑝)*+* + 𝑝0

2 + 𝐷 𝑝0 ∥
𝑝)*+* + 𝑝0

2 − log 4
= 2𝐽𝑆𝐷(𝑝)*+* ∥ 𝑝0) − log 4

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Sample minibatch of 𝑛 training points 𝒙 , , 𝒙 - , ⋯ , 𝒙 1 from 𝑝)*+*
• Sample minibatch of 𝑛 noise vectors 𝒛 , , 𝒛 - , ⋯ , 𝒛 1 from 𝑝/
• Update the discriminator parameters 𝜙 by stochastic gradient ascent

∇#𝑉 𝐺" , 𝐷# =
1
𝑛
∇#2

23,

1

log𝐷# 𝒙 2 + log 1 − 𝐷# 𝐺" 𝒛 2

• Update the generator parameters 𝜃 by stochastic gradient descent

∇"𝑉 𝐺" , 𝐷# =
1
𝑛 ∇"2

23,

1

log 1 − 𝐷# 𝐺" 𝒛 2

• Repeat for fixed number of epochs

The GAN training algorithm

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Choose 𝑑 𝑝)*+*, 𝑝" to be a two-sample test statistic
• Learn the statistic by training a classifier (discriminator)
• Under ideal conditions, equivalent to choosing 𝑑 𝑝)*+*, 𝑝" to be
𝐽𝑆𝐷 𝑝)*+* ∥ 𝑝"

• Generator 𝐺"(e.g., neural network) is a mapping that generates 𝒙 from
the latent variable 𝒛 and is trained to make it difficult for the classifier
to distinguish

Recap of GANs

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Pros:
• Loss only requires samples from 𝑝" (No likelihood needed!)
• Lots of flexibility for the neural network architecture, any 𝐺"

defines a valid sampling procedure
• Fast sampling (single forward pass)

• Cons: very difficult to train in practice

Recap of GANs

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Summary of GANs

• Likelihood-free training
• Training objective for GANs

𝑉 𝐺,𝐷 = 𝐸𝒙~&"#$# log𝐷 𝒙 + 𝐸𝒙~&(log 1 − 𝐷 𝒙
• With the optimal discriminator 𝐷0∗ , we see GAN minimizes a scaled and

shifted Jensen-Shannon divergence
min
0
2𝐽𝑆𝐷(𝑝)*+* ∥ 𝑝0) − log 4

• Parameterize 𝐷 by 𝜙 and 𝐺 by 𝜃
• Prior distribution 𝑝/

min
"
max
#

𝐸𝒙~&"#$# log𝐷# 𝒙 + 𝐸𝒛~&) log 1 − 𝐷# 𝐺" 𝒛

• I.e.,

𝑉 𝐺" , 𝐷# =
1
𝑛2
23,

1

log𝐷# 𝒙 2 + log 1 − 𝐷# 𝐺" 𝒛 2

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Beyond KL and Jenson-Shannon Divergence

• What choices do we have for 𝑑 ⋅ ?
• KL divergence: Autoregressive models, Flow models
• (scaled and shifted) Jensen-Shannon divergence (approximately):

original GAN objective

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

𝒇-divergences

• What choices do we have for 𝑑 ⋅ ?
• Given two densities 𝑝 and 𝑞, the 𝑓-divergence is given by

𝐷5 𝑝, 𝑞 = 𝐸𝒙~6 𝑓
𝑝 𝒙
𝑞 𝒙

• Where 𝑓 is any convex, lower-semicontinuous function with 𝑓 1 = 0
• Convex: Line joining any two points lies above the function
• Lower-semicontinuous

lim inf
7→7*

𝑓 𝑥 ≥ 𝑓 𝑥9
• for any point 𝑥9
• Jensen’s inequality

𝐸𝒙~6 𝑓
𝑝 𝒙
𝑞 𝒙

≥ 𝑓 𝐸𝒙~6
𝑝 𝒙
𝑞 𝒙

= 𝑓 M𝑝 𝒙 𝑑𝒙 = 𝑓 1 = 0

• Example: KL divergence with 𝑓 𝑢 = 𝑢 log 𝑢

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

𝒇-divergences

Supplementary Materials

A Introduction

We provide additional material to support the content presented in the paper. The text is structured as
follows. In Section B we present an extended list of f-divergences, corresponding generator functions
and their convex conjugates. In Section C we provide the proof of Theorem 2 from Section 3.
In Section D we discuss the differences between current (to our knowledge) GAN optimisation
algorithms. Section E provides a proof of concept of our approach by fitting a Gaussian to a mixture
of Gaussians using various divergence measures. Finally, in Section F we present the details of the
network architectures used in Section 4 of the main text.

B f -divergences and Generator-Conjugate Pairs

In Table 5 we show an extended list of f-divergences Df (PkQ) together with their generators
f(u) and the corresponding optimal variational functions T ⇤(x). For all divergences we have
f : domf ! R [{+1}, where f is convex and lower-semicontinuous. Also we have f(1) = 0
which ensures that Df (PkP) = 0 for any distribution P . As shown by [10] GAN is related to the
Jensen-Shannon divergence through DGAN = 2DJS � log(4). The GAN generator function f does
not satisfy f(1) = 0 hence DGAN(PkP) 6= 0.

Table 6 lists the convex conjugate functions f⇤(t) of the generator functions f(u) in Table 5, their
domains, as well as the activation functions gf we use in the last layers of the generator networks to
obtain a correct mapping of the network outputs into the domains of the conjugate functions.

The panels of Figure 4 show the generator functions and the corresponding convex conjugate functions
for a variety of f-divergences.

Name Df (PkQ) Generator f(u) T ⇤(x)

Total variation 1
2

R
|p(x)� q(x)| dx 1

2 |u� 1| 1
2 sign(

p(x)
q(x) � 1)

Kullback-Leibler
R
p(x) log p(x)

q(x) dx u log u 1 + log p(x)
q(x)

Reverse Kullback-Leibler
R
q(x) log q(x)

p(x) dx � log u � q(x)
p(x)

Pearson �2
R (q(x)�p(x))2

p(x) dx (u� 1)2 2(p(x)q(x) � 1)

Neyman �2
R (p(x)�q(x))2

q(x) dx (1�u)2

u 1�
⇥ q(x)
p(x)

⇤2

Squared Hellinger
R ⇣p

p(x)�
p

q(x)
⌘2

dx (
p
u� 1)

2
(
q

p(x)
q(x) � 1) ·

q
q(x)
p(x)

Jeffrey
R
(p(x)� q(x)) log

⇣
p(x)
q(x)

⌘
dx (u� 1) log u 1 + log p(x)

q(x) �
q(x)
p(x)

Jensen-Shannon 1
2

R
p(x) log 2p(x)

p(x)+q(x) + q(x) log 2q(x)
p(x)+q(x) dx �(u+ 1) log 1+u

2 + u log u log 2p(x)
p(x)+q(x)

Jensen-Shannon-weighted
R
p(x)⇡ log p(x)

⇡p(x)+(1�⇡)q(x) + (1� ⇡)q(x) log q(x)
⇡p(x)+(1�⇡)q(x) dx ⇡u log u� (1� ⇡ + ⇡u) log(1� ⇡ + ⇡u) ⇡ log p(x)

(1�⇡)q(x)+⇡p(x)

GAN
R
p(x) log 2p(x)

p(x)+q(x) + q(x) log 2q(x)
p(x)+q(x) dx� log(4) u log u� (u+ 1) log(u+ 1) log p(x)

p(x)+q(x)

↵-divergence (↵ /2 {0, 1}) 1
↵(↵�1)

R ⇣
p(x)

h⇣
q(x)
p(x)

⌘↵
� 1

i
� ↵(q(x)� p(x))

⌘
dx 1

↵(↵�1) (u
↵ � 1� ↵(u� 1)) 1

↵�1

h⇥p(x)
q(x)

⇤↵�1 � 1
i

Table 5: List of f -divergences Df (PkQ) together with generator functions and the optimal variational
functions.

C Proof of Theorem 1

In this section we present the proof of Theorem 2 from Section 3 of the main text. For completeness,
we reiterate the conditions and the theorem.

We assume that F is strongly convex in ✓ and strongly concave in ! such that

r✓F (✓⇤,!⇤) = 0, r!F (✓⇤,!⇤) = 0, (11)

r2
✓F (✓,!) ⌫ �I, r2

!F (✓,!) � ��I. (12)

These assumptions are necessary except for the “strong” part in order to define the type of saddle
points that are valid solutions of our variational framework.

11

Source: Nowozin et al., 2017

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Training with 𝒇-divergences

• Given 𝑝)*+* and 𝑝", we could minimize 𝐷5(𝑝)*+*, 𝑝") or 𝐷5(𝑝" , 𝑝)*+*)
as learning objectives. Non-negative and zero if 𝑝" = 𝑝)*+*

• However, it depends on the density ratio which is unknown

𝐷5 𝑝" , 𝑝)*+* = 𝐸𝒙~&"#$# 𝑓
𝑝" 𝒙
𝑝)*+* 𝒙

𝐷5 𝑝)*+*, 𝑝" = 𝐸𝒙~&% 𝑓
𝑝)*+* 𝒙
𝑝" 𝒙

• To use 𝑓-divergences as a two-sample test objective for likelihood-
free learning, we need to be able to estimate the objective using only
samples (e.g., training data and samples from the model)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Towards Variational Divergence Minimization

• Fenchel conjugate: for any function 𝑓 O , its convex conjugate is
𝑓∗ 𝑡 ≔ sup

:∈);<+
𝑢𝑡 − 𝑓(𝑢)

where 𝑑𝑜𝑚5 is the domain of the function 𝑓
• 𝑓∗ is convex (pointwise supremum of convex functions is convex) and

lower semi-continuous

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Towards Variational Divergence Minimization

• Let 𝑓∗∗ be the Fenchel conjugate of 𝑓∗

𝑓∗∗ 𝑢 ≔ sup
+∈);<+∗

𝑡𝑢 − 𝑓∗ 𝑡

• 𝑓∗∗ ≤ 𝑓. Proof: By definition, for all 𝑡, 𝑢
𝑓∗ 𝑡 ≥ 𝑢𝑡 − 𝑓 𝑢 or equivalently 𝑓 𝑢 ≥ 𝑢𝑡 − 𝑓∗ 𝑡

𝑓 𝑢 ≥ sup
+∈);<+∗

𝑢𝑡 − 𝑓∗ 𝑡 = 𝑓∗∗ 𝑢

• Strong Duality: 𝑓∗∗ = 𝑓 when 𝑓 O is convex and lower semicontinuous

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

𝒇-GAN: Variational Divergence Minimization

• We obtain a lower bound to an 𝑓-divergence via Fenchel conjugate

𝐷5 𝑝, 𝑞 = 𝐸𝒙~6 𝑓
𝑝 𝒙
𝑞 𝒙 = 𝐸𝒙~6 𝑓∗∗

𝑝 𝒙
𝑞 𝒙

= 𝐸𝒙~6 sup
+∈);<+∗

𝑡
𝑝 𝒙
𝑞 𝒙 − 𝑓∗ 𝑡

≥ sup
=∈𝒯

M
𝒳

𝑇 𝒙 𝑝 𝒙 − 𝑓∗ 𝑇 𝒙 𝑞 𝒙 𝑑𝒙

= sup
=∈𝒯

𝐸𝒙~& 𝑇 𝒙 − 𝐸𝒙~6[𝑓∗ 𝑇 𝒙

• where 𝒯:𝒳 → ℝ is an arbitrary class of functions
• Note: Lower bound is likelihood-free w.r.t. 𝑝 and 𝑞

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

𝒇-GAN: Variational Divergence Minimization

• Variational lower bound
𝐷5 𝑝, 𝑞 ≥ sup

=∈𝒯
𝐸7~& 𝑇 𝒙 − 𝐸𝒙~6[𝑓∗ 𝑇 𝒙

• Choose an 𝑓-divergence
• Let 𝑝 = 𝑝)*+* and 𝑞 = 𝑝0
• Parameterize 𝑇 by 𝜙 and 𝐺 by 𝜃
• Consider the following 𝑓-GAN object

min
"
max
#

𝐹(𝜃, 𝜙) = min
"
max
#

𝐸𝒙~&"#$# 𝑇# 𝒙 − 𝐸𝒙~&(% 𝑓∗ 𝑇# 𝒙
• Generator 𝐺" tries to minimize the divergence estimate and

discriminator 𝑇# tries to tighten the lower bound
• Substitute any 𝑓-divergence and optimize the 𝑓-GAN objective
• Prior distribution 𝑝/

min
"
max
#

𝐸𝒙~&"#$# 𝑇# 𝒙 − 𝐸𝒛~&) 𝑓∗ 𝑇# 𝐺" 𝒛

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Example: Univariate Mixture of Gaussians

• 𝑝)*+*: a mixture of Gaussians
• Model 𝑄" using linear transformation of a standard normal 𝑧~𝑁 0,1

and outputs 𝐺" 𝑧 = 𝜇 + 𝜎𝑧, where 𝜃 = 𝜇, 𝜎

KL KL-rev JS Jeffrey Pearson

Df (P ||Q✓⇤) 0.2831 0.2480 0.1280 0.5705 0.6457
F (!̂, ✓̂) 0.2801 0.2415 0.1226 0.5151 0.6379

µ⇤ 1.0100 1.5782 1.3070 1.3218 0.5737
µ̂ 1.0335 1.5624 1.2854 1.2295 0.6157

�⇤ 1.8308 1.6319 1.7542 1.7034 1.9274
�̂ 1.8236 1.6403 1.7659 1.8087 1.9031

train \ test KL KL-rev JS Jeffrey Pearson

KL 0.2808 0.3423 0.1314 0.5447 0.7345
KL-rev 0.3518 0.2414 0.1228 0.5794 1.3974
JS 0.2871 0.2760 0.1210 0.5260 0.92160
Jeffrey 0.2869 0.2975 0.1247 0.5236 0.8849
Pearson 0.2970 0.5466 0.1665 0.7085 0.648

Table 3: Gaussian approximation of a mixture of Gaussians. Left: optimal objectives, and the learned mean
and the standard deviation: ✓̂ = (µ̂, �̂) (learned) and ✓⇤ = (µ⇤,�⇤) (best fit). Right: objective values to the true
distribution for each trained model. For each divergence, the lowest objective function value is achieved by the
model that was trained for this divergence.

we use a neural network with two hidden layers having 64 units each and tanh activations. We
optimise the objective F (!, ✓) by using the single-step gradient method presented in Section 3. In
each step we sample batches of size 1024 each for both p(x) and p(z) and we use a step-size of
⌘ = 0.01 for updating both ! and ✓. We compare the results to the best fit provided by the exact
optimization of Df (PkQ✓) w.r.t. ✓, which is feasible in this case by solving the required integrals
in (2) numerically. We use (!̂, ✓̂) (learned) and ✓⇤ (best fit) to distinguish the parameters sets used in
these two approaches.

Results. The left side of Table 3 shows the optimal divergence and objective values Df (P ||Q✓⇤) and
F (!̂, ✓̂) as well as the resulting means and standard deviations. Note that the results are in line with
the lower bound property, that is, we have Df (P ||Q✓⇤) � F (!̂, ✓̂). There is a good correspondence
between the gap in objectives and the difference between the fitted means and standard deviations.
The right side of Table 3 shows the results of the following experiment: (1) we train T! and Q✓ using
a particular divergence, then (2) we estimate the divergence and re-train T! while keeping Q✓ fixed.
As expected, Q✓ performs best on the divergence it was trained with. Further details showing detailed
plots of the fitted Gaussians and the optimal variational functions are presented in the supplementary
materials.

In summary, the above results demonstrate that when the generative model is misspecified and does
not contain the true distribution, the divergence function used for estimation has a strong influence on
which model is learned.

3 Algorithms for Variational Divergence Minimization (VDM)

We now discuss numerical methods to find saddle points of the objective (6). To this end, we
distinguish two methods; first, the alternating method originally proposed by Goodfellow et al. [10],
and second, a more direct single-step optimization procedure.

In our variational framework, the alternating gradient method can be described as a double-loop
method; the internal loop tightens the lower bound on the divergence, whereas the outer loop improves
the generator model. While the motivation for this method is plausible, in practice the choice taking a
single step in the inner loop is popular. Goodfellow et al. [10] provide a local convergence guarantee.

3.1 Single-Step Gradient Method

Motivated by the success of the alternating gradient method with a single inner step, we propose a
simpler algorithm shown in Algorithm 1. The algorithm differs from the original one in that there is
no inner loop and the gradients with respect to ! and ✓ are computed in a single back-propagation.

Algorithm 1 Single-Step Gradient Method
1: function SINGLESTEPGRADIENTITERATION(P, ✓t,!t, B, ⌘)
2: Sample XP = {x1, . . . , xB} and XQ = {x0

1, . . . , x
0
B}, from P and Q✓t , respectively.

3: Update: !t+1 = !t + ⌘r!F (✓t,!t).
4: Update: ✓t+1 = ✓t � ⌘r✓F (✓t,!t).
5: end function

5

Source: Nowozin et al., 2017

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Beyond KL and Jensen-Shannon Divergence

• What choices do we have for 𝑑 ⋅,⋅ ?
• KL divergence: Autoregressive Models, Flow models
• (scaled and shifted) Jensen-Shannon divergence (approximately):

via the original GAN objective
• Any other 𝑓-divergence (approximately): via the 𝑓-GAN objective
min
"
max
#

𝐹(𝜃, 𝜙) = min
"
max
#

𝐸𝒙~&"#$# 𝑇# 𝒙 − 𝐸𝒙~&(% 𝑓∗ 𝑇# 𝒙

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Wasserstein GAN: beyond 𝒇-divergence

• The f-divergence is defined as

𝐷5 𝑝, 𝑞 = 𝐸𝒙~6 𝑓
𝑝 𝒙
𝑞 𝒙

• The support of 𝑞 must cover the support of 𝑝. Otherwise, discontinuity
arises in 𝑓-divergences

• E.g.,

• Let 𝑝 𝑥 = f1, 𝑥 = 0
0, 𝑥 ≠ 0 and 𝑞" 𝑥 = f1, 𝑥 = 𝜃

0, 𝑥 ≠ 𝜃

• 𝐷@A 𝑝, 𝑞" = f0, 𝜃 = 0
∞, 𝜃 ≠ 0

• 𝐷B(𝑝, 𝑞" = f 0, 𝜃 = 0
log 2 , 𝜃 ≠ 0

• We need a “smoother” distance D 𝑝, 𝑞 that is defined when 𝑝 and
𝑞 have disjoint supports

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Wasserstein (Earth-Mover) distance

• Introduced by Leonid Vaseršteĭn(Russia)
• 1stWasserstein distance

𝐷! 𝑝, 𝑞 ≔ inf
"∈$ %,'

)
(×(

𝒙 − 𝒚 𝑑𝛾 𝒙, 𝒚

= inf
"∈$ %,'

0
𝒙,𝒚

𝒙 − 𝒚 𝛾(𝒙, 𝒚)

• where Γ 𝑝, 𝑞 contains all joint distributions of 𝒙, 𝒚 where the
marginal of 𝒙 is 𝑝 𝒙 and the marginal of 𝒚 is 𝑞 𝒚

• 𝛾 𝒚 𝒙 : a probabilistic earth moving plan that warps 𝑝 𝒙 to 𝑞 𝒚

• Let 𝑝 𝑥 = f1, 𝑥 = 0
0, 𝑥 = 1 and 𝑞" 𝑥 = f1, 𝑥 = 𝜃

0, 𝑥 ≠ 𝜃
• 𝐷C 𝑝, 𝑞" = |𝜃|

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Wasserstein GAN (WGAN)

• Kantorovich-Rubinstein duality
𝐷! 𝑝, 𝑞 = sup

, !-.
𝐸𝒙~% 𝑓 𝒙 − 𝐸𝒙~' 𝑓 𝒙

• 𝑓 ! ≤ 1 means the Lipschitz constant of 𝑓 𝒙 is 1. I.e.,
𝑓 𝒙 − 𝑓 𝒚 ≤ 𝒙 − 𝒚 " ∀𝒙, 𝒚

• Intuitively, 𝑓 cannot change too rapidly
• Wasserstein GAN with discriminator 𝐷# 𝒙 and generator 𝐺" 𝒛

min
"
max
#

𝐸𝒙~&"#$# 𝐷# 𝒙 − 𝐸𝒛~&) 𝐷# 𝐺" 𝒛

• Lipschitzness of 𝐷# 𝒙 is enforced through weight clipping or
gradient penalty on ∇𝒙𝐷# 𝒙

• To enforce Lipschitz constraint, clip the weights of the critic to lie
within a compact space −𝑐, 𝑐 . The set of functions satisfying this
constraint is a subset of the 𝐾-Lipschitz functions for some 𝐾(𝑐)

• If we replace 𝑓 0 ≤ 1 for 𝑓 0 ≤ 𝐾, then we end up with 𝐾 ⋅ 𝐷# 𝑝, 𝑞

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Wasserstein GAN Gradient Penalty

• Wasserstein GAN-GP
min
"
max
#

𝐸𝒙~&"#$# 𝐷# 𝒙 − 𝐸𝒛~&) 𝐷# 𝐺" 𝒛

− 𝜆𝐸D𝒙~&-. ∇D𝒙𝐷# o𝒙
-
− 1

-

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Wasserstein GAN Gradient Penalty

• Wasserstein GAN-GP
min
"
max
#

𝐸𝒙~&"#$# 𝐷# 𝒙 − 𝐸𝒛~&) 𝐷# 𝐺" 𝒛

− 𝜆𝐸D𝒙~&-. ∇D𝒙𝐷# o𝒙
-
− 1

-

• Sampling distribution 𝑝 EF: uniformly along straight lines between pairs
of points sampled from the data distribution and the generator
distribution

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Wasserstein GAN Gradient Penalty

• Wasserstein GAN-GP
min
"
max
#

𝐸𝒙~&"#$# 𝐷# 𝒙 − 𝐸𝒛~&) 𝐷# 𝐺" 𝒛

− 𝜆𝐸D𝒙~&-. ∇D𝒙𝐷# o𝒙
-
− 1

-

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Inferring latent representations in GANs

• The generator of a GAN is typically a directed, latent variable model
with latent variables 𝒛 and observed variables 𝒙

• How can we infer the latent feature representations in a GAN?
• Unlike a normalizing flow model, the mapping 𝐺: 𝒛 → 𝒙 need not be

invertible
• Unlike a variational autoencoder, there is no inference network 𝑞 ⋅

which can learn a variational posterior over latent variables

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Inferring latent representations in GANs

• Solution 1: For any point 𝒙, use the activations of the prefinal layer of
a discriminator as a feature representation

• Intuition: Like supervised deep neural networks, the discriminator
would have learned useful representations for 𝒙 while distinguishing
real and fake

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Inferring latent representations in GANs

• If we want to directly infer the latent variables 𝒛 of the generator, we
need a different learning algorithm

• A regular GAN optimizes a two-sample test objective that compares
samples of 𝒙 from the generator and the data distribution

• Solution 2: To infer latent representations, we will compare samples of
𝒙, 𝒛 from the joint distributions of observed and latent variables as per
the model and the data distribution

• For any 𝒙 generated via the model, we have access to 𝒛 (sampled from
a simple prior 𝑝 𝒛)

• For any 𝒙 from the data distribution, 𝒛 is however unobserved (latent).
Need an encoder

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Summary of Generative Adversarial Networks

• Key observation: Samples and likelihoods are not correlated in
practice

• Two-sample test objectives allow for learning generative models only
via samples (likelihood-free)

• Wide range of two-sample test objectives covering 𝑓-divergences and
Wasserstein distances (and more)

Thanks

